霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 健康经验 >

一种测量细胞刚度的新方法

包括伦斯勒理工学院研究人员在内的一个团队开发了一种创新方法来测量细胞机械特性(即细胞硬度),这是新出现的无标记(即无组织学染料或免疫标记)生物物理标记的一部分,可用于鉴定细胞疾病和细胞状态。该研究很重要,因为它可用于快速癌症诊断和快速药物筛选,以及个性化医疗的发展。

正如最近在Small发表的一篇论文中所报道的,伦斯勒的研究人员开发了一种使用新型惯性微流体细胞展宽器(iMCS)以全自动和高通量方式测量数千个单细胞僵硬度的过程,用于细胞状态鉴定。

根据研究人员 - 伦斯勒的主要作者以及奥尔巴尼大学的一位同事的说法,众所周知,恶性癌细胞比普通健康细胞更柔软(更易变形)。另一个例子,来自疟疾感染患者的红细胞(RBC)比健康人的RBC更严格。“这些观察结果表明,测量细胞机械特性是一项至关重要的任务,这一原理已被广泛应用于生物物理研究,癌症诊断和药物发现,”机械,航空航天和核能系助理教授Aram Chung说。工程。

“面临的挑战是,以强大,快速和自动化的方式扫描数千个单细胞僵硬是非常困难的,”Chung说。“在进行这项研究时,必须通过多个领域的创新来解决这些挑战,以及癌症生物学家和机械和生物医学工程师之间的强有力合作,以实现这项研究。在这里,我们报告了一种新型微流体装置,其特征在于在一分钟内从样品注射到数据分析的6,000多个细胞的机械特性。

Chung指出,他们的发展预计会有各种应用。首先,通过处理未知的患者样本,iMCS显示出临床实施快速癌症诊断的巨大潜力。例如,可以直接从患者收集腹水或胸腔积液样本并通过iMCS进行处理,其中可以获得直接的细胞变形性结果,这可以及时地指导医生。此外,研究团队的平台可以扩展为快速药物筛选和个性化医疗。iMCS不是等待数天才能在不同条件下获得针对特定样品的药物治疗功效,而是在各种外部刺激下提供快速细胞反应表征,为各种药物测试应用提供处理大量样品的可能性。

“作为论文的第一作者,我的工作重点是设计一个实际可用于医学和生物物理研究的微流体平台。为了实现这一目标,我花费了大量的时间来设计一个简单的iMCS,而不是牺牲复杂的功能来实现精确的单细胞机械表征,“Yanxiang Deng说,他也是Chung生物光学流体实验室的研究生。

生物光学流体实验室是伦斯勒机械,航空航天和核工程系的一个研究小组,致力于研究有限雷诺数下的微尺度流动。基于对微尺度惯性流体行为的一系列基础研究及其与其他模态的整合,该实验室正在开发一种用于生物医学和制造的新型实用高通量微流体平台。

在Rensselaer,邓的研究领域专注于研究惯性微流体物理学,以开发用于定量单细胞分析的新型微流体微系统。作为下一步,邓正在致力于创建一种新型基于变形性的细胞分选仪,通过与奥尔巴尼医疗中心的新合作,实现下游分子谱分析,从而了解变形性与癌症迁移之间的关系。

“除了设计用于实时细胞机械筛选的创新微流体系统外,我们的自动化工作应该突出,”Chung说。“目前,许多微流体开发尚未被生物或医疗人员大量采用。这主要是因为没有广泛的培训或/和相关背景,它们很难操作。在这里,我们启用了基于单一命令的全自动操作,其中该过程在没有任何人为干预的情况下运行,实现了用户友好且稳健的操作。“Chung提到,如果没有简单性和鲁棒性,微流体技术将不会产生实际影响,并且他不断向他的研究小组强调这一点。

Chung与癌症生物学家以及实验和数值流体力学研究人员的研究和合作体现了新理工学院的愿景,这是Rensselaer教学,学习和研究的新兴范式,其基础是认识到全球挑战和机遇如此之大即使是最有才华的人也无法充分解决这些问题。Rensselaer作为合作的十字路口 - 与不同学科,行业和地理区域的合作伙伴合作 - 利用最先进的工具和技术解决复杂的全球挑战,其中许多工具和技术都是在伦斯勒开发的。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!