霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 健康经验 >

线粒体图有助于详细的听力回路

听觉的能力依赖于神经元以非常快的时间尺度不断地传递信息。如此高的信息传输速度导致了强烈的精力需求。在我们的细胞内,称为线粒体的微观发电厂提供了维持人体运动的主要能量来源。线粒体在整个人体中起着至关重要的作用,而在大脑中它们起着至关重要的作用。提供促进突触传递(神经元之间的信息传递)所需的大量能量。

在听觉系统中,有一个巨大的突触前突触末端,称为Held花萼,对双耳声音处理至关重要。在听力发作之前,不成熟的花萼突触不会以非常快的速率释放神经递质。但是一旦成熟,它们就可以可靠,迅速地释放神经递质来编码听觉信息。然而,线粒体如何支持成熟突触的能量需求活性仍然未知。

在最近发表于《神经科学杂志》上的一项研究中,来自MPFI和爱荷华州CCOM大学的科学家对Held发育中和成熟的花萼中线粒体的突触前分布和特征提供了前所未有的见识。

“我的实验室研究了突触如何使神经回路传递各种信息。特别是,我们对了解突触机制非常感兴趣,这些突触机制可实现快速识别和正确识别声音信息所需的快速听觉信号及其对听觉缺陷的作用,”解剖学和细胞生物学系副教授Samuel Young解释说。爱荷华大学CCOM。

“虽然我们了解花萼如何实现正确声音处理的一些一般原理,但许多原理仍然未知。因此,我们想了解在突触下水平是否存在线粒体变化。要回答我们的问题,我们需要MPFI的EM核心的专业知识。最初是一个刚起步的想法和一个简单的对话,后来变成了富有成果的合作努力。”

由于线粒体的体积相对较小,通常难以使​​用常规方法对其进行分析,因此需要3D电子显微镜才能充分揭示其复杂的结构细节。为了实现这一目标,Young Lab创建了具有线粒体靶向过氧化物酶的线粒体APEX2的辅助依赖型腺病毒载体,并将其在Held小鼠花萼中表达。除此之外,MPFI EM团队还开发了通过3D电子显微镜检测APEX2标记的线粒体的方案,以对突触前线粒体的体积和丰度进行广泛的分析。

“我们最大的挑战是开发协议和工作流程,使我们能够使用先进的3D-EM技术对花萼中的线粒体进行精细的成像,”该出版物的第一作者Connon Thomas说。“经过广泛的优化,我们设计了两种策略;第一次使用串行块面扫描电子显微镜或简称SBF-SEM,这是一种特殊的EM,它使我们能够生成大规模的3D图像集,以重建和分析终端内的线粒体。第二种策略是使用自动胶带收集超薄切片机连续切片扫描电子显微镜(ATUM-ssSEM),该技术可产生更高分辨率的图像,从而更易于分析精细的亚突触结构。

用SBF-SEM拍摄的图像进行3D重建显示,成熟花萼及其周围轴突中的线粒体体积明显高于未成熟花萼中的线粒体体积。似乎线粒体在成熟花萼中选择性富集,其体积比周围的轴突高。该数据证实了这样的想法,即在发育过程中增加的线粒体体积可以支持更活跃的成熟花萼的更高能量需求。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!