纤体梅效果怎么样(纤体梅有没有副作用) 冒险岛2梦幻乐园探索任务攻略(冒险岛2梦幻乐园探索任务攻略视频) 银行账户年检时间在每年( )月( )日前(银行账户年检) 无道具晨会互动小游戏(无道具晨会互动小游戏室内) 黄昏英雄传攻略(黄昏英雄传2.5攻略) 双面胶怎么快速去除胶水(双面胶怎么快速去除) 苹果醋解酒么(苹果醋为什么可以解酒) 怎样关闭电脑杀毒软件和防火墙(怎样关闭电脑杀毒软件和防火墙联想) 莫斯科气温和我国哪里差不多(莫斯科气温) 魔兽世界:探索艾萨拉(魔兽世界 艾萨拉) hopes是什么意思(hope是什么意思) 孕妇可以吃杏仁吗?(孕妇可以吃杏仁吗?孕中期) 8k纸有多大比A3大多少(8k纸有多大) 武汉艺术生文化课到底该如何学习?(武汉艺术生文化课培优) 节奏大师攻略四个技巧刷高分(节奏大师怎样玩才高分) 受凉感冒是风热还是风寒(受凉) 地球的南极北极都是冰天雪地那月球的两极呢(北极和南极都是冰天雪地) 蛇蛇大作战电脑版攻略(蛇蛇大作战游戏下载) 什么是哑口套和窗套(什么是哑口) WIN10电流麦解决方法(win10电脑电流麦怎么解决方法) 平时多吃什么食物补肾效果最好(平时多吃什么食物补肾效果最好女性) 哈伦裤适合什么年龄穿(哈伦裤适合什么人穿) 魔兽世界前夕稀有精英位置一览 看完就知道了(魔兽世界9.0前夕稀有精英位置与掉落) 如何实现创业成功(如何实现创业成功发展) QQ空间如何添加大图模块(qq空间怎么添加图片模块) 梦幻西游挖矿赚钱(挖矿赚钱) 剖腹产的好处(剖腹产的好处有哪些) 如图已知ab为圆o的直径弦cd⊥ab垂足为h(如图 已知AB是圆O的直径 弦CD垂直AB 垂足为H) 深圳上下沙租房攻略(深圳下沙哪里租房便宜) 被2345和hao123主页篡改修复方法 2015(2345是怎样篡改主页的以及如何彻底删除) nba历史得分榜百度一下(nba历史得分榜百度百科) 如何防雾霾 什么口罩防雾霾效果好(什么口罩可以防霾) 制作手工的材料有哪些(制作手工的材料有哪些简单) 天使等级 北京商标注册流程图(北京商标注册流程图解析) Galaxy S4 发布 全面解析新旗舰 图(galaxy s4 上市时间) 土大黄根主要治什么病(土大黄与大黄的区别) vivo手机怎么定位(vivo手机怎么定位查找) dnf更新失败怎么办 安装文件写入失败怎么办(为什么dnf更新写入失败) 隔玻璃晒太阳能起作用(隔着玻璃晒太阳能补钙) steam国服怎么玩apex(steam国服怎么玩最终幻想14) 纳雍县是哪个市 蜂蜜可以放冰箱吗(蜂蜜可以放冰箱吗可以放多久) 电脑怎么连热点(联想电脑怎么连热点) 石器时代宠物攻略(石器时代宠物大全) 经济管理出版社地址(经济管理出版社) 芒果tv怎么看湖南卫视(芒果tv怎么看湖南卫视回放) iPhone13如何在微店购物?(iphone13直营店可以直接买到吗) 淘宝海外版叫什么(淘宝海外版) 幽门螺杆菌抗体(幽门螺杆菌抗体偏高是怎么回事)
您的位置:首页 >Nature杂志 > 遗传学 >

神经信号识别可能对抗抑郁药有反应的人

导读 研究人员发现了一种神经信号,可以预测患有抑郁症的人是否可能会从舍曲林(一种常用的抗抑郁药)中受益。研究结果发表在《自然生物技术》上,

研究人员发现了一种神经信号,可以预测患有抑郁症的人是否可能会从舍曲林(一种常用的抗抑郁药)中受益。研究结果发表在《自然生物技术》上,表明新的机器学习技术可以识别人脑活动中与有意义的临床结果相关的复杂模式。该研究由美国国立卫生研究院(National Institutes of Health)的国家精神卫生研究所(NIMH)资助。

“当今,精神病学非常需要能够为治疗提供信息并超越我们诊断系统某些局限性的客观测试。我们的发现令人兴奋,因为它们反映了朝着这一临床目标取得的进展,并且还显示了带来复杂的精神病学数据分析方法。”资深作者Amit Etkin博士解释说。是斯坦福大学精神病学和行为科学教授,也是加利福尼亚洛斯阿尔托斯市Alto Neuroscience的首席执行官。

重度抑郁是最常见的精神障碍之一,2017年影响了约7%的成年人,但所经历的症状因人而异。尽管有些人可能会经历许多特征,包括持续的悲伤情绪,绝望感,愉悦感和精力下降,但其他人可能只会经历一些。有几种基于证据的治疗抑郁症的方法,但是确定哪种治疗方法最适合特定的人可能是一个反复试验的问题。

先前的研究表明,通过静息状态脑电图(EEG)来测量大脑活动的特定组成部分,可以深入了解人们对某些疗法的反应。但是,研究人员尚未开发出可以区分抗抑郁药反应和安慰剂反应的预测模型,也可以预测单个患者的预后。这两个功能对于神经签名具有临床相关性都是必不可少的。

埃特金(Etkin),共同作者,达拉斯的得克萨斯大学西南医学中心精神病学教授,医学博士Madhukar H. Trivedi以及加利福尼亚斯坦福大学的讲师魏武博士都是第一作者。从神经科学,临床科学和生物工程学来构建高级预测模型。研究人员开发了一种专门用于分析EEG数据的新型机器学习算法,称为SELSER(稀疏EEG潜伏SpacE回归)。他们假设该算法可能能够识别出抗抑郁治疗反应的可靠可靠的神经信号。

研究人员使用SELSER分析了NIMH资助的临床护理抗抑郁反应的建立主持人和生物特征(EMBARC)研究的数据,该研究是抗抑郁药物舍曲林(一种广泛使用的选择性5-羟色胺再摄取抑制剂(SSRI))的大型随机临床试验。作为研究的一部分,抑郁症参与者被随机分配接受舍曲林或安慰剂治疗八周。研究人员将SELSER应用于参与者的治疗前脑电图数据,检查机器学习技术是否可以产生预测参与者治疗后抑郁症状的模型。

SELSER能够根据参与者睁开眼睛时记录的一种特定类型的大脑信号(称为alpha波)可靠地预测患者对舍曲林的反应。这种基于EEG的模型优于使用EEG数据或其他类型的个人级别数据(例如症状严重性和人口统计学特征)的常规模型。使用几种补充方法对独立数据集进行的分析表明,SELSER所做的预测可能会扩展到舍曲林反应以外的更广泛的临床结果。

在一个独立的数据集中,研究人员发现,基于EEG的SELSER模型与那些对两种或更多种药物没有反应的受试者相比,对至少一种抗抑郁药显示部分反应的受试者预示了更大的改善临床结果。另一个独立的数据集显示,SELSER预测的受试者对舍曲林的改善几乎没有改善,他们更有可能对涉及一种称为经颅磁刺激(结合心理疗法)的特定类型的非侵入性脑刺激的治疗产生反应。

现在正在开展工作,以进一步在大型独立样本中复制这些发现,以确定SELSER作为诊断工具的价值。根据Etkin,Trivedi,Wu和同事的说法,本研究强调了机器学习在推进个性化抑郁症治疗方法方面的潜力。

“虽然在我们的研究结果准备用于常规临床用途之前还需要做很多工作,但是脑电图是一种低成本且易于使用的工具,这一事实使得在短期内从研究到临床实践的转化更加可能。我希望我们的研究结果能成为我们的一部分机器学习和客观测试的影响这一领域的转折点。” Etkin总结说。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!

最新文章