Mosher(@ClaytonPMosher(@ClaytonPMosher)说:“我们正在记录植入神经外科手术电极的人类患者大脑的神经元,并将神经活动排列到心跳上,发现许多神经元每次心跳都会改变其放电方式。” ),是Cedars-Sinai医学中心的研究人员,他是该研究的第一作者与艾伦研究所的Yia Wei共同撰写。“我们当时想,'好吧。这令人惊讶,'”
但是随着团队的进一步扩大,他们意识到神经元并没有以不同的方式发射。相反,大脑在摇摆。对于每一次心跳,大脑都会搏动,神经元在颅骨内的位置会发生轻微移动。科学家们估计,在心跳期间,神经元的位移大约为3微米,小于头发的宽度。这种运动造成了神经元放电方面的差异。
“我们从许多人认为是大脑运动而不是神经活动的结果开始。他们认为这是嘈杂的。他们认为这是他们实验的局限性,”艾伦研究所(Allen Institute)的科斯塔斯·阿纳斯塔西努(Costas Anastassiou)说,他是高级作者研究与Cedars-Sinai医学中心的Ueli Rutishauser一起进行。“我们能够证明的是,如果以一种聪明的方式使用它,大脑的这种自然发生的运动可以告诉我们更多关于我们正在记录的细胞的身份的信息。这是因为测量同一细胞的活性来自大脑不同位置的神经元提供了有关神经元的其他信息。”
传统上,科学家根据神经元的波形对神经元进行分类,这是每个神经元每次活动时(即“尖峰”时)发出的电活动的特征模式。每个神经元波形的形状是不同的。通过检查波形的宽度,科学家可以将神经元可靠地分为两种类型:窄型和宽型。
现在,由心跳引起的微小大脑运动使科学家可以更准确地测量波形形状。随着神经元和电极之间的距离变化,测得的波形也变化。通过测量这些变化,研究小组表明它们可以区分人类海马中的三种不同类别的神经元:窄峰(NS),宽峰1(BS1)和宽峰2(BS2)。每个类别都有不同的发射特性:研究人员发现BS1神经元与伽马波协调其活动,而BS2神经元与theta波协调其活动。
“伽马和θ波是大脑中与认知高度相关的活动模式。例如,我们知道记忆和学习与θ振荡密切相关。我们知道注意力与伽马振荡密切相关。”阿纳斯塔西
他说:“归根结底,要了解大脑的工作原理,我们需要了解大脑中存在哪些不同类型的细胞,以及这些细胞类别如何相互作用以产生认知和行为。”“人们需要能够跨越各种尺度,才能说出微观世界是如何引起宏观世界中发生的这种行为现象的。我们的工作首次揭示了如何在人类大脑的尺度之间实现这种桥梁。 ”
神经科学的挑战之一是,在活着的人类中神经元的行为方式与孤立地在大脑切片中进行调查时它们的行为方式之间通常存在差异。通过人类大脑组织的录音,研究人员能够构建模拟真实神经元的生物物理特征和形态的单细胞模型。该模型桥接了体内大脑和离体大脑切片的录音,以作为对神经元进行分类的新工具。人类神经元的计算模型可用于更好地了解我们从植入电极的活人那里记录的信号。
Mosher说:“最终,我们想了解的是,人类大脑中不同类型的神经元如何对认知和行为做出贡献。”“第二个目标是研究心跳和呼吸反过来如何影响行为或认知。”
标签: 神经元
免责声明:本文由用户上传,如有侵权请联系删除!