霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 健康经验 >

创新技术可以创造出新型的生物相容性微粒

杜克大学(Duke University)的生物医学工程师已经设计出一种方法,可以制造对生命组织安全的小颗粒,从而使它们能够创造出对药物输送,诊断和组织工程具有吸引力的新形状。

仅需一些热和光,我们就可以制造出一些非常奇怪的微粒。该技术非常简单,可以在短短几分钟内放大到数十亿个微粒。”

杜克大学生物医学工程研究科学家Stefan Roberts

在生物相容性微粒的世界中,形状,大小,内部微观结构和材料类型决定了它们的固有特性。尽管公司和研究实验室已经可以制造许多复杂的微粒,但是该过程通常涉及复杂的制造技术,例如多乳液微流控或流式光刻。两者都有缺点。

多乳液微流控技术乏味地控制着一系列单个的油滴,但是努力保持材料彼此完全分离,无法用于大规模生产。流式光刻通过图案化的掩模照射光以蚀刻柔软材料中的形状,并且可以在短时间内制造许多粒子,但是该工艺很难适应复杂的形状和内部结构。

罗伯茨(Roberts)与杜克大学(Duke)生物医学工程学杰出教授Alan L. Kaganov教授Ashutosh Chilkoti合作,着手尝试一种全新的方法-生物材料。这对研究人员有使用弹性蛋白样多肽(ELPs)的历史,该蛋白是无序蛋白,很像面条球,是从混乱中获得稳定性,并且没有真实的形状。最近,研究小组开始研究部分有序蛋白(POPs),该蛋白保留了许多ELP的生物学有用特性,但具有足够的有序链段,以提供比湿面条更好的稳定性。

可以对两种类型的蛋白质进行改造,使其在特定温度下在相态之间来回移动。虽然这对于将药物缓慢释放到体内或支持伤口中的组织生长等应用是有用的功能,但研究人员很快发现,通过将ELP和POP放在一起,它们也可以产生各种颗粒形状。

罗伯茨说:“蛋白质紊乱是生物学中的热门话题,许多研究人员试图发现无形状的蛋白质仍具有生物学目的。”“我们工作的一个暗流是相反地将这些蛋白质视为材料科学家所认为的,并查看我们是否可以以现有材料无法实现的方式对它们进行工程改造以实现自身的生物学功能。”

在本文中,Roberts和Chilkoti展示了用这两种类型的蛋白质制成的一些新的微粒。通过调节组装和拆卸时的温度,并以不同的速率来回扫描一系列温度,研究人员表明,他们能够创造出一系列形状,例如具有实心核的壳,具有实心核的壳没有核心,缠结着绳索的贝壳缠在一起,被他们称为“葡萄树上的果实”。然后,通过掺入光敏氨基酸,它们显示出它们可以将这些形状冻结并变成带有闪光的固体微粒。

研究人员说,产生具有精确分开的区域的微粒的能力与诸如药物输送和组织工程等应用有关。

每组参数同时产生数百万个比一般细胞稍大的固体,生物相容性微粒。只需要几分钟,这一切都发生在大约一滴水大小的液体中。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!