霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 生物技术 >

纳米技术能够以近原子分辨率可视化RNA结构

我们生活在一个由 RNA 制造和运行的世界,RNA 是基因分子 DNA 的同等重要的兄弟姐妹。事实上,进化生物学家假设 RNA 甚至在 DNA 及其编码的蛋白质出现之前就存在并自我复制。快进到现代人类:科学表明,不到 3% 的人类基因组被转录成信使 RNA (mRNA) 分子,而信使 RNA (mRNA) 分子又被翻译成蛋白质。相比之下,其中 82% 被转录成具有其他功能的 RNA 分子,其中许多仍然是神秘的。

要了解单个 RNA 分子的作用,需要在其组成原子和分子键的水平上破译其 3D 结构。研究人员经常研究 DNA 和蛋白质分子,方法是将它们变成规则堆积的晶体,可以用 X 射线束(X 射线晶体学)或无线电波(核磁共振)检查。然而,这些技术不能以几乎相同的效率应用于 RNA 分子,因为它们的分子组成和结构灵活性阻止它们容易形成晶体。

现在,由 Wyss Core 教员 Peng Yin 博士领导的一项研究合作。在哈佛大学 Wyss 仿生工程研究所和 Maufu Liao 博士。在哈佛医学院 (HMS),报告了一种全新的 RNA 分子结构研究方法。ROCK,顾名思义,使用 RNA 纳米技术,可以将多个相同的 RNA 分子组装成高度有序的结构,从而显着降低单个 RNA 分子的灵活性并使其分子量成倍增加。研究小组将具有不同大小和功能的著名模型 RNA 用作基准,表明他们的方法能够使用称为冷冻电子显微镜的技术对所含 RNA 亚基进行结构分析(冷冻电镜)。他们的进展发表在Nature Methods中。

“ROCK 正在打破目前 RNA 结构研究的限制,并能够以近原子分辨率解​​锁现有方法难以或不可能访问的 RNA 分子的 3D 结构,”Yin 说,他与 Liao 一起领导了这项研究. “我们预计这一进展将振兴基础研究和药物开发的许多领域,包括新兴的 RNA 治疗领域。” Yin 还是 Wyss 研究所分子机器人计划的负责人,也是 HMS 系统生物学系的教授。

获得对 RNA 的控制

威斯研究所的尹教授团队开创了各种方法,使 DNA 和 RNA 分子能够根据不同的原理和要求自组装成大型结构,包括 DNA 砖和 DNA 折纸。他们假设这种策略也可用于将天然存在的 RNA 分子组装成高度有序的环状复合物,通过将它们特异性连接在一起,它们的弯曲和移动自由度受到高度限制。许多 RNA 以复杂但可预测的方式折叠,小片段彼此碱基配对。结果通常是稳定的“核心”和“茎环”向外围凸出。

“在我们的方法中,我们安装了‘接吻环’,将属于相同 RNA 的两个拷贝的不同外周茎环连接起来,从而形成一个整体稳定的环,包含多个感兴趣的 RNA 拷贝,”Di 说刘博士,两位第一作者之一,尹氏课题组博士后。“我们推测这些高阶环可以通过cryo-EM进行高分辨率分析,该技术已首次成功应用于RNA分子。”

描绘稳定的 RNA

在低温 EM 中,许多单个粒子在低温下被快速冷冻以防止任何进一步的运动,然后通过电子显微镜和计算算法的帮助进行可视化,这些算法比较粒子的 2D 表面投影的各个方面并重建其 3D 结构. Peng 和 Liu 与 Liao 和他的前研究生 François Thélot 博士合作,后者是该研究的另一位共同第一作者。Liao 和他的团队为快速发展的低温电磁场以及特定蛋白质形成的单个粒子的实验和计算分析做出了重要贡献。

“与传统方法相比,Cryo-EM 在查看包括蛋白质、DNA 和 RNA 在内的生物分子的高分辨率细节方面具有很大优势,但大多数 RNA 的小尺寸和移动趋势阻碍了 RNA 结构的成功确定。我们组装 RNA 多聚体的新方法通过增加 RNA 的大小并减少其运动,同时解决了这两个问题,”同时也是 HMS 细胞生物学副教授的廖说。“我们的方法为通过冷冻电镜快速测定许多 RNA 的结构打开了大门。” RNA纳米技术和cryo-EM方法的整合使该团队将他们的方法命名为“通过安装接吻环实现RNA寡聚化的cryo-EM”(ROCK)。

为了为 ROCK 提供原理验证,该团队专注于来自单细胞生物四膜虫的大内含子 RNA 和来自固氮细菌 Azoarcus 的小内含子 RNA,以及所谓的 FMN 核糖开关. 内含子 RNA 是散布在新转录的 RNA 序列中的非编码 RNA 序列,必须“剪接”出来才能生成成熟的 RNA。FMN 核糖开关存在于与维生素 B2 衍生的黄素代谢物生物合成有关的细菌 RNA 中。在结合其中一种黄素单核苷酸 (FMN) 后,它会转换其 3D 构象并抑制其母 RNA 的合成。

“将四膜虫 I 组内含子组装成环状结构使样品更加均匀,并能够利用组装结构的对称性使用计算工具。虽然我们的数据集规模相对适中,但 ROCK 的先天优势使我们能够以前所未有的分辨率解决结构问题,”Thélot 说。“RNA 的核心分辨率为 2.85 Å [1 Ångström 是一百亿 (US) 一米,是结构生物学家使用的首选度量标准],揭示了核苷酸碱基和糖骨架的详细特征。我不认为我们没有 ROCK 就可以到达那里——或者至少在没有更多资源的情况下不会。”

Cryo-EM 还能够捕获处于不同状态的分子,例如,如果它们改变其 3D 构象作为其功能的一部分。将 ROCK 应用于 Azoarcus 内含子 RNA 和 FMN 核糖开关,该团队设法识别了 Azoarcus 内含子在其自剪接过程中转变的不同构象,并揭示了 FMN 核糖开关配体结合位点的相对构象刚性.

“彭寅和他的合作者的这项研究优雅地展示了 RNA 纳米技术如何作为促进其他学科发展的加速器。能够可视化和理解许多天然存在的 RNA 分子的结构可能会对我们对许多生物学和病理学的理解产生巨大影响跨不同细胞类型、组织和生物体的过程,甚至可以实现新的药物开发方法,”Wyss 创始董事 Donald Ingber 医学博士说。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

猜你喜欢