Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

面食小麦的基因组装配为现代小麦育种带来了新的见解

导读 来自莱布尼茨植物遗传与作物植物研究所(IPK Gatersleben)的科学家参与了使用3D构象捕获测序(Hi-C)方法进行基因组装配。由于测序的硬粒小麦

来自莱布尼茨植物遗传与作物植物研究所(IPK Gatersleben)的科学家参与了使用3D构象捕获测序(Hi-C)方法进行基因组装配。由于测序的硬粒小麦基因组,研究人员能够解开其驯化历史,远远超过祖先的野生二粒小麦(Triticum turgidum ssp.dicoccoides))。通过访问完整基因组提供的信息已被用于获得关于重要谷物物种的遗传特性的新知识。通过比较emmer和硬粒小麦的基因组,在最近的作物植物中发现了突变,这导致收获的谷粒中不希望的重金属镉的积累。这一发现现在使植物育种者能够通过去除突变来选择性地培育现代硬粒小麦品种,以减少谷物和面食中的镉含量。

面食的生产需要非常粘稠的糯米粉,这可以通过使用谷物中具有高百分比的谷蛋白的小麦来满足。四倍体硬质小麦(Triticum turgidum L. ssp.durum),也称为面食小麦,生产具有理想蛋白质含量的谷物,用于制造美味的面食产品。因此,在面包小麦(Triticum aestivum)旁边,硬粒小麦被认为是最重要的小麦品种之一。

硬粒小麦起源于驯化的二粒小麦(Triticum turgidum ssp.dicoccum),这是硬粒小麦的第一个证据,其历史可以追溯到大约6500 - 7500年前。驯化的二粒小麦本身来自大约一万年前的近东肥沃新月的野生二粒小麦(Triticum turgidum ssp.dicoccoides)。硬粒小麦仅在1,500至2,000年前成为主要的作物。然而,随着现代硬粒小麦品种的连续选育和育种,现在被认为是人类驱动的四倍体小麦进化的重要里程碑。

由主导的国际科学家合作组织现已对硬粒小麦品种“Svevo”的基因组进行了全面测序和组装。其四倍体基因组的大小为10.45千兆碱基对(Gbp),略小于六倍体面包小麦的15 Gbp大基因组,该基因组在一年前完全测序。作为硬粒小麦项目的一部分,Saib Milner博士,Axel Himmelbach博士,Martin Mascher博士和莱布尼茨植物遗传与作物植物研究所(IPK Gatersleben)的Nils Stein博士接受了微调。使用称为“Hi-C”的3D-染色体构象捕获测序方法进行基因组装配过程。该方法通过检测和分配基因组序列,可以精确绘制线性基因组序列,

利用完全组装的基因组,对“全球四倍体小麦收集”的1,856个样本进行了遗传多样性和选择标记的全球调查。由此产生的全基因四倍体小麦的全基因组遗传多样性分析使研究人员能够追溯硬粒小麦的遗传路径,同时回顾其在小麦基因组中数千年经验选择和育种的结果。因此,科学家们发现,在野生二粒小麦的驯化过程中,遗传多样性尤其明显减少,而随后对硬粒小麦地方品种进行适应,选择和繁殖,导致遗传多样性相对温和地降低。

通过“Svevo”与其野生祖先的直接比较,科学家在5B染色体上发现了一个突变,导致了TdHMA3-B1基因的两个等位基因。原始等位基因TdHMA3-B1a在emmer种质中被发现并编码了镉转运蛋白,其降低了谷粒中的镉含量。然而,突变的等位基因TdHMA3-B1b导致转运蛋白失败,导致现代作物植物中有毒重金属的含量更高。进一步的研究证明,这种不良特性在最近的硬粒小麦品种中很普遍。

由于发现了“高镉等位基因”,人们发现了一种迄今未知的特性,这种特性在现代硬粒小麦中无意中成熟。现在,这种知识使植物育种者能够系统地培育新的硬粒小麦品种,这些品种不再携带有缺陷的镉转运蛋白。对硬粒小麦驯化历史的理解及其对基因组的影响,展示了基因组分析在现代小麦育种中的有用性。基因组分析已成为鉴定有用等位基因的关键策略,支持育种工作,如降低毒性,但也提高粮食产量,质量或小麦恢复力。

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章