Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

电吃微生物如何利用电子来固定二氧化碳

导读 华盛顿大学圣路易斯分校的一项新研究解释了细胞过程,这种过程可以让喜爱太阳的微生物吃掉电 - 转移电子来固定二氧化碳来促进其生长。

华盛顿大学圣路易斯分校的一项新研究解释了细胞过程,这种过程可以让喜爱太阳的微生物“吃掉”电 - 转移电子来固定二氧化碳来促进其生长。

华盛顿大学的一个团队由艺术与科学生物学助理教授Arpita Bose和实验室博士候选人Michael Guzman领导,他们展示了一种天然存在的Rhodopseudomonas palustris菌株如何从金属氧化物或铁锈等导电物质中吸收电子。这项工作在3月22日的自然通讯杂志上发表。

该研究建立在Bose之前的发现之上,即R. palustrisTIE-1可以消耗电子来自像电极一样的生锈代谢物,这一过程称为细胞外电子摄取。R. palustris是光养的,这意味着它利用光能来进行某些代谢过程。这项新研究解释了这种微生物将电子从电流中汲取的细胞汇。

“它首次清楚地表明了这种活动 - 生物体吃电的能力 - 与二氧化碳固定有关,”帕克研究员研究微生物代谢及其对生物地球化学循环的影响。

这种机械知识有助于为微生物利用可持续能量储存或其他生物能源应用的自然能力提供信息 - 这一潜力引起了能源部和国防部的注意。

“波氏疟原虫株可以在野生和异国情调的地方发现,如马萨诸塞州伍兹霍尔的一座生锈的桥梁,TIE-1从那里被分离出来,”Bose说。“真的,你可以在任何地方找到这些生物。这表明细胞外电子摄取可能非常普遍。”

古兹曼补充说:“主要的挑战是它是一种厌氧菌,所以你需要在没有氧气的环境中种植它才能获得光能。但另一方面,那就是这些挑战得到了满足。很多其他有机体都没有这种生物体的多功能性。“

在他们的新论文中,研究人员表明,来自电的电子进入膜中的蛋白质,这对光合作用很重要。令人惊讶的是,当他们删除微生物固定二氧化碳的能力时,他们发现其消耗电力的能力降低了90%。

“它真的想用这个系统来修复二氧化碳,”Bose说。“如果你把它拿走 - 这种天生的能力 - 它根本就不想吸收电子。”

她说,反应在某些方面类似于可充电电池。

“微生物利用电能为其氧化还原池充电,储存电子并使其大大减少,”Bose说。“为了排出它,细胞会减少二氧化碳。所有这一切的能量都来自于阳光。整个过程不断重复,使细胞能够制造出只有电,二氧化碳和阳光的生物分子。”

全华盛顿大学的一个团队克服了许多技术障碍来完成这项研究。McKelvey工程学院的Mark Meacham帮助设计和制造了微流体装置,使研究人员能够了解细胞中从电源中提取细菌的活动。该团队还依靠包括地球和行星科学部门David Bouke在内的合作者的支持,他们帮助Bose和Guzman使用二次离子质谱法来确定微生物如何使用二氧化碳。

这项新研究回答了基础科学问题,为未来的生物能源应用提供了大量机会。

“很长一段时间,人们都知道微生物可以与环境中的电极类似物相互作用 - 也就是说,矿物质也会充电,”古兹曼说。“但是没有人真正意识到这个过程也可以通过光合自养生物来完成,例如这些类型的生物固定它们自己的碳并利用光来制造能量。这项研究填补了该领域一个知之甚少的差距。”

Bose的实验室正致力于利用这些微生物制造生物塑料和生物燃料。

“我们希望这种将电和光结合起来减少二氧化碳的能力可以用来帮助找到能源危机的可持续解决方案,”Bose说。

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章