Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

胚胎发生过程中的力梯度将细胞募集到后肠

导读 纽约,纽约 - 2019年1月16日 - 胚胎发育是一个深刻的物理转变过程,几个世纪以来一直挑战研究人员。基因和分子如何控制力和组织僵硬,

纽约,纽约 - 2019年1月16日 - 胚胎发育是一个深刻的物理转变过程,几个世纪以来一直挑战研究人员。基因和分子如何控制力和组织僵硬,以协调发育中胚胎形态的出现?如何在我们的DNA中编码的器官和组织的复杂性出现的精确机制?

哥伦比亚工程公司生物医学工程助理教授Nandan Nerurkar正在努力回答这些问题。作为哈佛医学院的博士后研究员,Nerurkar专注于胚胎发育的一个特定方面:一组干细胞 - 内胚层 - 如何从发育中的胚胎表面移动到中心,并且这样做是从平板转变的到一个空心管。这种被称为肠管的结构然后形成整个呼吸道和胃肠道的衬里。

在今天发表在“自然”杂志上的一项研究中,Nerurkar与哈佛大学的同事合作,为早期胚胎发育的这一关键步骤提供了新的视角。研究小组发现,肠管的形成是由内胚层的集体细胞运动驱动的,这是细胞大规模长距离移动的过程,不需要相互重新排列。他们还发现,这种集体运动是由将分子梯度转化为力梯度的细胞触发的,这种力梯度将细胞从表面驱动到胚胎中。这一发现是少数几个例子之一,特别是在脊椎动物中,它们是如何将分子线索转化为塑造我们器官的物理力量的。

研究结果可能对干细胞如何在实验室中用于创建功能性器官具有重要意义,并可以更好地了解胃肠道出生缺陷的根本原因。“我们的主要目标是了解我们作为复杂生物是如何从一个看似无序的细胞球 - 早期胚胎中精确形成的,”该研究的主要作者Nerurkar说。

鉴定驱动干细胞分化为成熟细胞类型的基因 - Nerurkar领域的主要焦点 - 是实验室中增殖替代器官的重要一步。但是,Nerurkar认为这只是图片的一部分。“理解如何指导这些细胞组织成功能性三维器官同样重要。发展中的胚胎掌握着这方面的配方,许多研究小组,包括我们的研究小组,现在正在利用物理和力学的语言来剖析它。“

该团队包括Nerurkar的博士后顾问Clifford J. Tabin,George Jacob和Jacqueline Hazel Leder教授和哈佛医学院遗传学教授,以及合作者L Mahadevan,Lola England de Valpine应用数学教授,以及有机和教授哈佛大学的进化生物学和物理学在发展生物学领域的前沿采用了创新方法。他们结合了传统的发育生物学方法,包括基因表达的分析和操作以及发育中的鸡胚中细胞运动的实时时间显微镜,采用工程方法,如数学建模和力和应变测量。

他们专注于内胚层内化的一部分:后肠,它产生一半的小肠,大肠和结肠。先前已知的肠管形成来自命运映射实验,其中细胞在发育早期被标记,然后被映射到标记细胞在发育后期结束的位置。这种静态分析使用过程开始和结束的静态图像来对中间发生的事情做出有根据的猜测,这导致了大多数胚胎学教科书中存在的肠管形成的观点。“基于我们最近的调查结果,这种观点充其量是不完整的,最糟糕的是完全错误,”Nerurkar说。

与早期的命运映射研究不同,Nerurkar及其同事在胚胎中使用活体成像直接观察细胞运动,因为内胚层被内化形成管。接下来,他们应用机械工程和发育生物学方法的组合来了解这些细胞运动是如何发生的,以及运动如何协调以在早期胚胎中形成这种关键结构。

研究小组发现,这些运动是通过将分子梯度转换为力梯度来协调的,这些梯度来自细胞,这些细胞与它们感知的分子线索 - 成纤维细胞生长因子(FGF)的量成比例地收缩。这导致内胚层细胞之间的拉锯战:当一个“团队”开始获胜时,细胞实际上从对方团队中招募球员,将他们从低浓度到高浓度的FGF中拉出来。

FGF功能的不规则性可导致许多发育缺陷。Nerurkar说:“在人类发育过程中,肠管形成的错误可能会导致流产,这是在妊娠早期,当这个过程发生时相对较高的风险。”

虽然这项研究仅关注内胚层内化的一部分,即后肠,但仍然不知道形成气管,肺,食道,胃和肝的前肠和形成胰腺和小肠的中肠是如何形成的。形成。Nerurkar计划利用他的新方法研究胚胎发育的其他领域,并研究FGF信号传导是否以及如何更广泛地控制其他组织和器官发育的机制。

“我想更多地了解机械和分子如何通过不同的机制来协调这些非常独特的组织的形成,但是来自相同的初始干细胞池,”他说。“通过关注FGF信号传导下游的组织水平机制,我们现在可以了解这一重要途径在发育过程中如何塑造其他器官和组织,包括心脏,大脑和脊柱。”

Nerurkar正继续在哥伦比亚工程公司进行这项研究,开发定量分子 - 机械关系,可用于在实验室中设计和构建替代组织,使用这些可扩散线索的受控传递 - 细胞分泌的指导信号然后漂浮到相邻细胞 - 指导细胞自组织成功能组织和器官。如果他和该领域的其他人能够建立胚胎组织形成的设计原则,那么就有可能将这些相同的原则重新用于再生医学和组织工程应用。

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章