霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > Nature杂志精选 >

细菌如何构建超高效的光合作用机器

面对未来人口较多且气候更加不确定的研究人员正在寻找提高作物产量的方法,他们正在寻找光合细菌来寻找工程解决方案。

在“生物化学杂志”上,一个加拿大研究小组报告了蓝藻如何成为光合作用中最浪费的步骤之一。该研究调查了羧基体的组装,其中细菌浓缩二氧化碳,提高了称为RubisCO的关键酶的效率。

“基本上我们所吃的一切都是从RubisCO开始的,”加拿大安大略省圭尔夫大学教授,最近的论文的资深作者Matthew Kimber说。

该酶由16个蛋白质亚基组成,对光合作用至关重要。利用从光中捕获的能量,它将二氧化碳结合到有机分子中,然后植物从中生成新的糖。不幸的是,它并不是非常有效。或者,从金伯的观点来看,“RubisCO的任务非常费力。”

这种酶在古老的世界中进化,二氧化碳很常见,氧气很少见。结果,区分两种气体并不是很挑剔。现在大气层已经转向,RubisCO经常意外地捕获氧气,产生无用的化合物,然后工厂必须投入额外的能量来回收利用。

与植物相比,蓝细菌很少会出现这种错误。这是因为细菌将他们的RubisCO收集到称为carboxysomes的致密体内。细菌将碳酸氢盐(简单的水合二氧化碳)泵入细胞;一旦进入羧基体,酶将碳酸氢盐转化为二氧化碳。因为二氧化碳不能通过羧基体周围的蛋白质壳逃逸,所以它会积聚到高浓度,帮助RubisCO避免代价高昂的错误。

金伯对carboxysomes的兴趣主要在于理解他们组织的逻辑。“他们实际上是非常错综复杂的机器,”他解释道。“蓝藻细菌产生11种左右的正常蛋白质,这些蛋白质以某种方式组织成这种自我调节的巨型复合物,可以超过小细胞的大小。”

“从生物学的角度来看,这是非常奇怪的,因为如果CcmM通过复制小亚基而产生,它几乎肯定最初以相同的方式结合,”金伯说。“在某些时候,它必须进化到更喜欢新的绑定站点。”

研究人员还发现,CcmM中结合域之间的连接体足够短,“它不是缠绕在RubisCO周围,而是将(单个酶)束缚在一起,就像串上的珠子一样。有几个这样的连接器随机地连接每个RubisCO,它将所有的东西交换成这个巨大的水珠;你围绕它包裹一个壳,然后它变成了carboxysome。“

去年秋天,另一所大学的科学家报告称,他们已经成功地在烟草植物的叶绿体中制造了一个剥离的羧基体。这些植物生长得不是特别好,作者得出结论认为它们已经带走了过多的羧基组成部分;虽然它可能是在叶绿体中建造的,但它对植物造成了拖累而不是帮助。更好地了解CcmM等蛋白质如何有助于羧基构建和功能,可以帮助生物工程师在下一代工程植物中利用羧基体的效率。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!