霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > Nature杂志精选 >

神经元中的Tweaked CRISPR提供了探测脑部疾病的新能力

加州大学旧金山分校和美国国立卫生研究院的科学家团队首先实现了另一个CRISPR,这可能从根本上改变了科学家研究脑部疾病的方式。

在8月15日发表在Neuron杂志上的一篇论文中,研究人员描述了一种技术,该技术使用在UCSF开发的特殊版本的CRISPR来系统地改变干细胞产生的人类神经元中基因的活性,这是干细胞衍生的第一次成功合并。细胞类型和CRISPR筛选技术。

虽然已知突变和其他遗传变异与许多神经系统疾病的风险增加有关,但技术瓶颈阻碍了科学家努力了解这些基因究竟是如何引起疾病的努力。

加州大学旧金山分校神经退行性疾病研究所副教授,CZ Biohub研究员兼联合资深作者Martin Kampmann博士说:“在这项研究之前,存在着限制科学家们可以对实验室人类神经元做些什么的重大限制。”新的研究。

一方面,直到最近,科学家才无法可靠地获得可用于高级实验室实验的人脑细胞,Kampmann解释说,他也是加州大学旧金山分校威尔神经科学研究所的成员。“有可能让那些接受过脑组织切除治疗癫痫或脑癌的患者捐献神经元。但这些样本只能存活几天。你不能进行实验来探测基因功能。活着的神经元。“

相反,科学家通常依赖于脑疾病的动物模型,这种模型无法捕捉到人类神经生物学的许多细微差别。

2006年京都大学和加州大学旧金山分校附属格拉德斯通研究所的医学博士Shinya Yamanaka发现了一种突破发育时钟并将成体细胞转化为干细胞的方法,这种方法可以通过一些哄骗转化为任何干细胞。在体内发现的细胞类型 - 包括神经元。这些“诱导多能干细胞”(iPSCs)使人脑细胞广泛用于实验室研究。

当CRISPR基因编辑系统六年后到来时,科学家们认为他们最终拥有操纵人类神经元基因所需的所有工具,并确定它们如何促成神经系统疾病。

但科学家们很快发现,CRISPR系统的DNA切割机制,一种叫做Cas9的酶,与iPSCs混合不好。“干细胞具有非常活跃的DNA损伤反应。当Cas9产生甚至只有一到两次DNA切割时,它会导致毒性导致细胞死亡,”Kampmann说。

因此,坎普曼决定解决毒性问题。作为加州大学旧金山分校实验室博士后教授Jonathan Weissman博士,Kampmann共同发明了一种名为CRISPRi(用于“干扰”)的工具,这是一种修饰形式的CRISPR技术,其中Cas9酶已经失活。当CRISPRi找到它正在寻找的基因时,它会在不进行任何切割的情况下抑制其活动。因此,与标准CRISPR-Cas9不同,Kampmann预测,CRISPRi不应对iPSC或干细胞衍生的神经元有毒。

在新论文中,Kampmann及其合作者描述了他们如何将CRISPRi用于人类iPSC和iPSC衍生的神经元,并发现它可以靶向并干扰基因而不会杀死细胞 - 这一长期以来一直困扰着科学家。

利用该系统,研究人员展示了他们的技术如何用于寻找可能导致或导致脑部疾病的基因。例如,他们鉴定了特异性延长神经元寿命的基因,但对iPSC或癌细胞没有可比较的影响。他们还发现了增加神经突数量的基因 - 从神经元生长并传递神经信号的投射 - 并确定它们分支的频率。

但最令人惊讶的发现之一是发现“管家”基因 - 已知对生存至关重要,但被认为在所有细胞中发挥相同作用 - 实际上在神经元和干细胞中表现不同。当研究人员在这两种细胞类型中干扰相同的管家基因时,细胞通过激活(或灭活)一组完全不同的基因来应对。这一结果表明,与接受的智慧相反,管家基因在不同的细胞类型中可能不会以相同的方式运作,这是坎普曼和他的实验室渴望进一步探索的一个想法,因为这些差异可能在疾病中起重要作用。

Kampmann现在正在使用该技术研究不同类型的神经元,以确定为什么某些疾病选择性地影响一部分神经元,例如运动神经元在ALS中被选择性损伤的方式。他还将研究扩展到其他类型的脑细胞 - 包括称为星形胶质细胞和小胶质细胞的细胞 - 科学家们最近才发现它们是如何从人类iPSC中产生的。

但最终,目标是将这种将CRISPRi和iPSCs结合起来的技术转变为一种工具,可以揭示治疗脑疾病急需的新治疗方法。

“该领域面临的一大挑战是,对于大多数这些疾病,我们应该针对药物开发确定的精确分子途径仍不清楚,”新研究的共同资深作者,医学博士,医学博士Michael Ward说。美国国立卫生研究院的医生科学家。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!