霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > Nature杂志精选 >

AI学习化学语言来预测如何制作药物

剑桥大学的研究人员已经证明,算法能够以超过90%的准确度预测复杂化学反应的结果,优于经过培训的化学家。该算法还向化学家展示了如何制造目标化合物,为所需目的地提供化学“图谱”。研究结果发表在ACS Central ScienceandChemical Communications期刊的两项研究中。

药物发现和材料科学的一个主要挑战是找到通过化学连接更简单的构建块来制造复杂的有机分子的方法。问题是这些构建块经常以意想不到的方式作出反应。

“制造分子通常被描述为通过反复试验实现的艺术,因为我们对化学反应性的理解远未完成,”剑桥卡文迪什实验室的Alpha Lee博士说。“机器学习算法可以更好地理解化学,因为它们从数百万种已发表的化学反应中提取反应模式,这是化学家无法做到的。”

Lee和他的团队开发的算法使用模式识别工具,通过对专利中公布的数百万反应模型进行训练,识别分子中的化学基团如何反应。

研究人员将化学反应预测视为机器翻译问题。反应分子被认为是一种“语言”,而产品被认为是一种不同的语言。然后,模型使用文本中的模式来学习如何在两种语言之间“翻译”。

使用这种方法,该模型在预测看不见的化学反应的正确产品方面达到了90%的准确度,而受过训练的人类化学家的准确率约为80%。研究人员表示,该模型足够准确,可以检测数据中的错误并正确预测过多的困难反应。

该模型也知道它不知道的内容。它产生不确定性评分,消除了错误的预测,准确率为89%。由于实验耗时,准确的预测对于避免追求最终以失败告终的昂贵实验途径至关重要。

在第二项研究中,Lee和他的团队与生物制药公司Pfizer合作,证明了该方法在药物发现方面的实际潜力。

研究人员表明,在对已发表的化学研究进行培训时,该模型可以根据实验室笔记本准确预测反应,表明该模型已经学会了化学规则并可以将其应用于药物发现设置。

该团队还表明,该模型可以预测导致所需产品的反应顺序。他们将这种方法应用于多种类似药物的分子,表明它预测的步骤在化学上是合理的。该技术可以显着缩短临床前药物发现的时间,因为它为药物化学家提供了从何处开始的蓝图。

“我们的平台就像一个用于化学的GPS,”李说,他也是圣凯瑟琳学院的研究员。“它告诉化学家,反应是进行还是进行,以及如何通过反应途径来制造新分子。”

剑桥研究人员目前正在利用这种反应预测技术开发一个完整的平台,在药物发现和材料发现中建立设计 - 制造 - 测试周期:预测有前途的生物活性分子,制造这些复杂有机分子的方法,以及选择实验信息量最大的。研究人员正在努力从模型中提取化学见解,试图了解人类没有学到的东西。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!