霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > Nature杂志精选 >

世界上第一个三有机体系统为医学研究和诊断打开了大门

想象一下,当画家拥有的只有一片叶子和一块树皮,而不是拥有一棵正在生长的,正在成长的树木作为模型时,试图画一片森林。了解零件如何装配在一起可以带来很大的不同。

这就是辛辛那提儿童大学的研究人员今天在著名的《自然》杂志上发表的研究结果所实现的类器官科学的进步水平。由Takanori Takebe博士领导的团队没有在单独的实验室皿中独立培养微型人体器官,而是成功地生长了由三个器官组成的相互连接的集合:肝脏,胰腺和胆管。

从干细胞中生长出来的类器官是人体组织的微小3D形成,实际上执行着在大型器官中发现的多种细胞类型的功能。辛辛那提儿童医院的类器官专家已经种植了具有吸收营养的绒毛,产生消化酸的胃类器官的肠等。

就其本身而言,人类类器官已经为研究提供了复杂的工具。但是这项进展使科学家能够研究人体组织如何协同工作。向前迈出的重要一步可以开始减少对基于动物的药物研究的需求,大大加速精准医学的概念,并有朝一日导致实验室中可移植组织的生长。

Takebe说:“连接是其中最重要的部分。”“我们所做的是设计一种生产器官前形成阶段组织的方法,使它们能够自然发育。我们正在最大限度地发挥制造多种器官或身体的能力。”

五年的任务实现了关键目标

Takebe,32岁,于2016年加入辛辛那提儿童基金会,并在东京医科牙科大学(TMDU)担任双重职位。他于2011年毕业于医学院,并计划成为一名肝脏移植外科医师。但是,当他了解到供体器官供需之间日趋严重的鸿沟时,竹别就转移了注意力,专注于器官的供应。

在以前的研究中,竹部展示了一种生产大量肝脏“芽”(肝脏类器官的早期形式)的方法。他还长出了能反映疾病状态的肝脏类器官,其中包括脂肪性肝炎,这是一种危险的肝脏瘢痕形成和某些肥胖者发炎的危险形式。

迄今为止,他的工作得到了皇太子的称赞,皇太子在2018年获得了科学促进会的表彰。发现杂志还列出了武部的组织体工作作为其列表中的第5位2013年排名前100位的科学成就。

但是Takebe说这个项目是他影响最大的工作。

Takebe说:“我们在一段时间之前就注意到了器官分化的这一点。但是花了五年时间来调整培养系统,使这种发育得以发生。”

三个原始器官如何共同成长

该过程中最困难的部分是最早的步骤。Takebe与辛辛那提儿童基金会的同事一起工作了多个小时,其中包括第一作者小池博之(Hiroyuki Koike)博士(现在在医学院),以完善这一过程。他们从人类皮肤细胞开始,将它们转化回原始的干细胞,然后引导并促使这些干细胞形成两个非常早期的细胞“球体”,这些细胞被松散地称为前肠和中肠。

这些细胞团在胚胎发育的早期就形成。在人类中,它们会在妊娠的第一个月后期形成。在小鼠中,它们仅在8.5天内形成。随着时间的流逝,这些球体融合并变形为器官,最终成为消化道。

在实验室中生长这些球体是一个复杂的过程,需要在正确的时间使用正确的成分。一旦它们足够成熟(需要花大量时间来确定时间的计时步骤),那么简单的部分就来了。

该团队只是将球状体放在一个特殊的实验盘中并排放置。将细胞悬浮在通常用于支持类器官生长的凝胶中,然后置于覆盖精心混合的一批生长培养基的薄膜顶部。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!