霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > Nature杂志精选 >

新颖的技术有助于解释为何明亮的光线使我们保持清醒

洛杉矶-(2019年10月15日)在最近几十年中,科学家们已经学到了很多有关不同神经元如何相互连接和相互发送信号的知识。但是,很难追踪称为轴突的单个神经纤维的活动,其中一些神经纤维可以从脚尖延伸到头部。了解这些联系对于弄清大脑如何接收和响应来自身体其他部位的信号非常重要。

Salk研究所和加州大学圣地亚哥分校的研究人员正在报告一种追踪这些联系并确定神经元如何交流的新颖技术。该团队使用这种技术来揭示有关大脑如何响应小鼠视网膜所接收的光信号的细节,该细节于2019年10月15日发表在《细胞报告》(Cell Reports)中。

该论文的共同通讯作者萨尔克教授Satchidananda Panda说:“这项研究是一项突破,因为之前没有人知道如何研究这些联系。”“这项新技术使我们能够超越电子显微镜的局限性。”

新方法利用几种不同的实验室技术来理解一种称为内在光敏性视网膜神经节细胞(ipRGC)的神经元。这些在眼后部视网膜中发现的细胞表达一种称为黑素的蛋白,该蛋白可感知蓝光。

Salk和UCSD小组使用病毒将一种称为小单氧生成蛋白(mini-SOG)的蛋白传递给ipRGC,以便可以在选举显微镜下更详细地查看这些细胞。该系统旨在将mini-SOG束缚在光敏细胞的膜上,从而可以在光学和电子显微镜下轻松跟踪整个神经元,包括延伸到大脑不同部位的长轴突。

“由于开发了用于相关多尺度光和电子显微成像的新基因引入探针,我们基于Salk和UCSD的研究团队能够追踪从厘米到几毫米的神经细胞发出的细小过程,从视网膜到多个在那里,它们连接到对昼夜节律,眼睛反射和视觉至关重要的大脑区域。”加州大学圣地亚哥分校神经科学杰出教授,萨克大学兼职教授马克·埃利斯曼说。“我们能够获得有关这些神经元细胞向复杂回路中下一个神经元发出信号所需的机制的前所未有的三维信息。”

研究人员说,以前使用微型SOG的大多数工作都是在细胞系中完成的,并将其用于小鼠中以绘制视网膜神经元如何连接大脑的图。该方法使他们能够收集有关ipRGC与大脑不同部位之间连接的新信息。

已知ipRGC连接许多调节非常不同任务的大脑区域。这些细胞告诉大脑的一部分在外面有多亮,因此我们的瞳孔可以在不到一秒钟的时间内迅速闭合。相同的ipRGC还连接到大脑的主时钟,以调节我们的睡眠-觉醒周期。熊猫说:“但是,要让我们完全清醒,需要几分钟的光线。”“到目前为止,还不清楚相同的ipRGC如何在不同的时间范围内完成这些截然不同的任务。”

研究人员发现,差异与视网膜检测到的光到达大脑的方式有关。通过将微型SOG传递到小鼠的眼睛,它们能够将信号追踪到大脑的一部分,该部分在对光做出反应时会收缩瞳孔。

熊猫说:“这些连接要牢固得多,类似于从花园水管中倒水。”“而ipRGC与主时钟之间的连接较弱-更像滴灌。”由于ipRGC通过这种较慢的滴注系统将光信号传递到生物钟中心,因此任何有意义的信息到达并重置脑钟都需要更长的时间。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!