Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

人工智能技术识别自闭症背后的新一类突变

导读导致疾病的DNA中的许多突变不在实际基因中,而是位于曾被认为是垃圾的99%的基因组中。尽管科学家们最近已经明白,这些巨大的DNA片段确实发

导致疾病的DNA中的许多突变不在实际基因中,而是位于曾被认为是“垃圾”的99%的基因组中。尽管科学家们最近已经明白,这些巨大的DNA片段确实发挥了关键作用,但迄今为止,大规模地破译这些影响是不可能的。

利用人工智能,普林斯顿大学领导的团队已经解释了这种突变对自闭症患者的功能影响。研究人员认为,这种强有力的方法通常适用于发现任何疾病的遗传贡献。

研究人员于5月27日在Nature Genetics期刊上发表文章,分析了1790个家庭的基因组,其中一个孩子患有孤独症谱系障碍,但其他成员则没有。该方法在120,000个突变中进行分类,以找到那些影响自闭症患者基因行为的突变。虽然结果没有揭示自闭症病例的确切原因,但它们揭示了研究人员研究的数千种可能的贡献者。

以前的许多研究都集中在识别基因本身的突变上。基因本质上是制造构建和控制身体的许多蛋白质的说明。基因突变导致突变的蛋白质,其功能被破坏。然而,其他类型的突变会破坏基因的调控方式。这些区域的突变不会影响基因的产生,而是产生何时和产生多少。

研究人员说,到目前为止,不可能在整个基因组中查找调控基因的DNA片段,并预测这种调节DNA中的突变可能如何导致复杂疾病。该研究首次证明调节DNA突变可导致复杂疾病。

这种方法为任何疾病的分析提供了框架。“

Olga Troyanskaya,计算机科学和基因组学教授,该研究的高级作者

该方法可能特别有助于神经系统疾病,癌症,心脏病和许多其他无法确定遗传原因的努力。

“这改变了我们思考这些疾病可能原因所需的方式,”Troyanskaya说,她也是纽约西蒙斯基金会熨斗研究所基因组学副主任,领导了一组合着者。

该团队还包括由洛克菲勒大学的神经科学家Robert Darnell领导的小组。本文的第一作者是Jian Zhou和Christopher Park,他们在普林斯顿大学获得博士学位,现在正在访问Lewis-Sigler综合基因组学研究所的合作者和Flatiron研究所的研究人员,以及普林斯顿Lewis-Sigler研究所的Chandra Theesfeld。用于整合基因组学。

大多数先前关于疾病遗传基础的研究都集中在20,000个已知基因和调节这些基因的DNA的周围部分。然而,即使是大量的遗传信息也只占人类基因组中32亿个化学对的1%多一点。其他99%传统上被认为是“黑暗”或“垃圾”,尽管最近的研究已经开始破坏这一想法。

在他们的新发现中,研究团队提供了一种方法来理解这一大量基因组数据。该系统使用称为深度学习的人工智能技术,其中算法执行连续的分析层以了解否则将无法辨别的模式。在这种情况下,该算法教导自己如何识别DNA的生物学相关部分并预测这些片段是否在已知影响基因调节的2,000多种蛋白质相互作用中发挥作用。该系统还预测破坏单对DNA单元是否会对这些蛋白质相互作用产生实质性影响。

在此计算成就之前,收集此类信息的传统方法是对每个序列进行艰苦的实验室实验以及该序列中的每个可能的突变。这些可能的功能和突变数量太大而无法考虑 - 实验方法需要针对超过2,000种类型的蛋白质相互作用测试每种突变,并在组织和细胞类型中反复重复这些实验,总计数亿次实验。其他研究小组试图通过将机器学习应用于DNA的靶向部分来加速这一发现,但是没有实现查看每个DNA单元和每个可能的突变的能力以及对整个基因组中超过2,000种调节相互作用的影响。 。Troyanskaya说,该算法“沿基因组滑动”分析其周围1000个化学对的每一个化学对,直到它扫描了所有突变。因此,该系统可以预测突变整个基因组中每个化学单元的影响。最后,它揭示了可能调节可能干扰该调节的基因和突变的DNA序列的优先列表。

我们的论文真正允许你做的是采取所有这些可能性并对它们进行排名。优先顺序本身非常有用,因为现在你也可以继续在最优先的情况下进行实验。“

克里斯托弗公园

最后,该系统基于已知的致病突变校准其并开发“疾病影响评分”,评估给定突变对疾病有何影响的可能性。

在自闭症的情况下,研究人员分析了1790个具有“单纯性”孤独症谱系障碍的家庭的基因组,这意味着该病症在一个孩子中是明显的,但在其他家庭成员中则不然。(这些数据来自2000多个孤独症家庭的Simons Simplex Collection。)在这个样本中,受自闭症谱系障碍影响的人中只有不到30%具有先前确定的遗传原因。研究人员表示,新发现的突变可能会显着增加这一比例。

预测每个突变的功能效应的能力是这项新研究的关键创新。之前的研究发现,与未受影响的人相比,检测自闭症患者的调节突变数量存在任何差异具有挑战性。然而,新方法研究了预测具有高功能影响的突变,发现受影响人群中此类突变的数量明显增多。

当研究人员随后查看哪些基因受这些突变影响时,他们发现它们是与大脑功能密切相关的基因。这些新发现的突变影响了与先前鉴定的突变相似的基因和功能。

“现在我们打开这个领域,了解可能与自闭症有关的所有因素,”Theesfeld说。

这些信息对于家庭及其医生来说也很重要,可以更好地诊断这种疾病,并避免过分笼统地假设一个人的孤独症如何与其他人分类。“他们说,当你遇到一个患有自闭症的人时,你遇到了一个患有自闭症的人,因为没有相同的病例,”Theesfeld说。“基因上,它似乎是一样的。”

通过这种新方法,该团队正在分析各种形式的癌症,心脏病和其他疾病的遗传原因。

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章