Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

从一次脑部扫描到医学人工智能的更多信息

导读 马萨诸塞州剑桥市 - 麻省理工学院的研究人员设计了一种新方法,用于从用于训练机器学习模型的图像中收集更多信息,包括那些可以分析医学

马萨诸塞州剑桥市 - 麻省理工学院的研究人员设计了一种新方法,用于从用于训练机器学习模型的图像中收集更多信息,包括那些可以分析医学扫描以帮助诊断和治疗大脑状况的模型。

医学领域一个活跃的新领域涉及培训深度学习模型,以检测与神经系统疾病和疾病相关的脑部扫描结构模式,如阿尔茨海默病和多发性硬化症。但是收集训练数据是费力的:每次扫描中的所有解剖结构必须单独概述或由神经学专家手工标记。并且,在某些情况下,例如儿童罕见的大脑状况,首先只能进行少量扫描。

在最近的计算机视觉和模式识别会议上发表的一篇论文中,麻省理工学院的研究人员描述了一个系统,该系统使用单个标记扫描以及未标记的扫描,自动合成不同训练样例的大量数据集。数据集可用于更好地训练机器学习模型以在新扫描中找到解剖结构 - 训练数据越多,预测越好。

这项工作的关键是自动生成“图像分割”过程的数据,该过程将图像划分为更有意义且更易于分析的像素区域。为此,该系统使用卷积神经网络(CNN),这是一种机器学习模型,它已成为图像处理任务的动力。该网络分析来自不同患者和不同设备的大量未标记扫描,以“学习”解剖学,亮度和对比度变化。然后,它将这些学习变化的随机组合应用于单个标记扫描,以合成既逼真又准确标记的新扫描。然后将这些新合成的扫描输入到不同的CNN中,该CNN学习如何分割新图像。

“我们希望在没有大量训练数据的现实情况下,这将使图像分割更容易获得,”第一作者Amy Zhao说,他是电气工程和计算机科学系(EECS)的研究生,计算机科学与人工智能实验室(CSAIL)。“在我们的方法中,您可以学习模仿未标记扫描的变化,以智能地合成大型数据集来训练您的网络。”

例如,有兴趣使用该系统帮助在马萨诸塞州综合医院培训预测分析模型,赵说,在儿童患者中,只有一两个标记的扫描可能存在特别罕见的大脑状况。

在报纸上加入赵是:EECS和CSAIL的博士后Guha Balakrishnan;EECS教授Fredo Durand和John Guttag,以及资深作家Adrian Dalca,他也是哈佛医学院放射学的教员。

系统背后的“魔术”

虽然现在已经应用于医学成像,但该系统实际上已经开始作为综合智能手机应用程序的训练数据的手段,该应用程序可以从流行的可收集纸牌游戏“魔术:聚会”中识别和检索关于卡的信息。在20世纪90年代早期发布的“Magic”拥有超过20,000张独特的卡片 - 每隔几个月发布更多 - 玩家可以使用它们来制作定制游戏牌。

赵,一个狂热的“魔术”玩家,想要开发一个CNN驱动的应用程序,用智能手机相机拍摄任何卡的照片,并自动从在线卡数据库中提取价格和评级等信息。“当我从游戏商店挑选卡片时,我厌倦了将所有名字输入我的手机并查看评级和组合,”赵说。“如果我能用手机扫描它们并提取这些信息,那会不会很棒?”

但她意识到这是一项非常艰难的计算机视觉训练任务。“你需要在所有不同的照明条件和角度下拍摄所有20,000张卡片的照片。没有人会收集该数据集,”赵说。

相反,赵在CNN上训练了大约200张卡片的小型数据集,每张卡片有10张不同的照片,以学习如何将卡片变成不同的位置。它计算了不同的光照,角度和反射 - 当卡片被放置在塑料套管中时 - 计算出数据集中任何卡片的真实扭曲版本。这是一个激动人心的激情项目,赵说:“但我们意识到这种方法非常适合医学图像,因为这种类型的翘曲非常适合MRI。”

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章