霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 生态学 >

硝酸盐如何调节豆类中的基因表达

豆科植物(豆类)在其根部形成根瘤吸收氮。当氮含量很高时,豆类将停止根瘤的产生(图1),但正是硝酸盐的存在如何控制这些植物中根瘤的形成一直是一个谜。现在,的研究人员发现,蛋白质与硝酸盐之间的相互作用可以诱导和抑制基因,控制结瘤,并在可持续农业中具有潜在的应用。

在4月发表于《植物细胞》的一项研究中,筑波大学的一个研究小组表明,建立结节发育的蛋白质之间不同的DNA结合特性决定了控制结节共生的基因是否开启或关闭。基因表达是硝酸盐诱导的。

到现在为止,对分子活性的了解还不够全面,这些分子活性决定了在过量硝酸盐存在下豆类如何阻止结瘤。先前的研究确定了与结节形成有关的转录因子(有助于使特定基因“打开”或“关闭”的蛋白质),但这只是故事的一部分。

该研究的资深作者Takuy​​a Suzaki教授说:“在先前鉴定出与结节发生有关的蛋白质(称为NLP)的转录因子的基础上,我们试图回答一个问题,即硝酸盐如何控制促进结节的共生基因表达,” Takuy​​a Suzaki教授说。“我们测试了特定的自然语言处理,发现它们具有重叠的功能,导致硝酸盐诱导的结瘤控制。”

为了检查这些分子之间的相互作用,研究人员使用了来自莲花的蛋白质分析了RNA分子和植物性状。他们发现某些蛋白质具有双重功能,充当硝酸盐依赖性基因表达的主要调节剂。他们还确定了新的蛋白质结合位点,并将其与先前已知的结合位点进行了比较。他们的发现揭示了与NLP调控共生基因抑制硝酸盐结节的转录有关的基本原理。

研究小组强调了其他问题。在细胞核中发现一些NLP响应硝酸盐并停止结节的产生,而其他NLP则不断地聚集在细胞核中,而与硝酸盐水平无关。对于后者,还不清楚它们如何仅在硝酸盐存在下起作用。NLP在细胞中的位置很重要,因为翻译(将RNA编码为蛋白质时)发生在细胞质中。如果在阅读了遗传密码后(翻译后修饰)蛋白质发生了变化,则可以解释这些NLP如何访问蛋白质与蛋白质的相互作用并调节基因。

Suzaki教授解释说:“发现转录因子如何影响基因表达一直是理解植物转录调控难题的一个遗漏环节。” “我们的发现使我们更加了解这些复杂的分子关系中可能发生的事情,但是还有许多事情要解开。未来的研究应该旨在回答其他NLP和感兴趣的其他植物物种如何调节结瘤的问题。”

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!