Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱
您的位置:首页>Nature杂志>生理学>

强大的显微镜揭示了动力Nanoscaffold

导读很多时候我们的细胞需要移动。移动细胞指导我们的身体形成(胚胎发育)。免疫细胞漫游以捕获不想要的入侵者。愈合细胞(成纤维细胞)迁移到修补

很多时候我们的细胞需要移动。移动细胞指导我们的身体形成(胚胎发育)。免疫细胞漫游以捕获不想要的入侵者。愈合细胞(成纤维细胞)迁移到修补伤口。但并非所有运动都是可取的:当癌细胞获得遍布全身的运动能力(转移)时,肿瘤最危险。某些细菌和病毒可以利用细胞的运动机制侵入我们的身体。了解细胞如何移动 - 以及驱动该过程的棒状肌动蛋白丝 - 是学习如何停止或促进运动以改善人类健康的关键。

现在,使用世界上最强大的显微镜之一,来自Sanford Burnham Prebys医学发现研究所(SBP)和北卡罗来纳大学教堂山分校(UNC-Chapel Hill)的科学家们发现了一种致密,动态和无组织的肌动蛋白丝纳米支架 - 类似大海捞针 - 响应分子信号而被诱导。这是研究人员首次在分子水平上直观地观察到一种响应细胞信号而触发的结构 - 这一重要发现扩展了我们对细胞如何运动的理解。该研究发表在美利坚合众国国家科学院院刊(PNAS)上。

“细胞电子显微镜正在彻底改变我们对细胞内部运作的理解,”该论文的高级作者,SBP生物信息学和结构生物学项目教授Dorit Hanein博士说。“这项技术使我们能够收集细胞区域的强大3D图像 - 类似于MRI,可以创建我们身体的详细图像。我们能够以自然状态可视化细胞,这揭示了细胞内一种前所未见的肌动蛋白纳米结构。“

在这项研究中,科学家们使用SBP的低温电子显微镜(Titan Krios),人工智能(AI)和量身定制的计算和细胞成像方法来比较小鼠成纤维细胞的纳米级图像和荧光Rac1(一种蛋白质)的时间标记光图像。调节细胞运动,对力或应变(机械传感)和病原体入侵的反应。这项技术复杂的工作流程 - 规模达到五个数量级(数十微米到几纳米) - 经过数年的发展,达到目前的稳健性和准确性水平,并通过SBP结构生物学家团队的实验和计算工作成为可能。 UNC-Chapel Hill的生物传感器团队。

图像显示了由短肌动蛋白杆组成的密集,无组织,类似支架的结构。这些结构在Rac1被激活的特定区域中突然出现,并且当Rac1信号传导停止仅两分半钟时迅速消散。这种动态支架与低Rac1激活区域中的各种其他肌动蛋白组件形成鲜明对比 - 一些由肌动蛋白长而对齐的杆组成,另一些由从较长肌动蛋白丝的侧面分支的短肌动蛋白杆组成。包裹肌动蛋白支架的体积缺乏常见的细胞结构,例如核糖体,微管,囊泡等,可能是由于结构的密度很大。

“我们感到惊讶的是,实验后的实验揭示了这些与Rac1活化相关的区域中未对齐,密集的肌动蛋白棒的独特热点,”Niels Volkmann博士说,他是该论文的共同通讯作者,领导计算部分这项研究,以及SBP生物信息学和结构生物学项目的教授。“我们认为这种疾病实际上是支架的强度 - 它赋予了灵活性和多功能性,以建立更大,更复杂的肌动蛋白丝结构,以响应其他局部空间线索。”

接下来,科学家们希望扩展该协议,以便可视化更多为响应其他分子信号而创建的结构,并进一步开发该技术以允许进入细胞的其他区域。

“这项研究只是一个开始。现在我们开发了这种定量纳米级工作流程,将动态信号传导行为与电子冷冻断层扫描的纳米尺度分辨率相关联,我们和其他科学家可以实施这种强大的分析工具,不仅可以破译细胞运动的内部运作,而且可以用于阐明细胞运动的内部运作。许多其他大分子机器在不受干扰的细胞环境中的动力学,“Hanein说。

她补充说,“肌动蛋白是一种结构蛋白;它与150多种肌动蛋白结合蛋白相互作用,产生多种结构,每种结构都具有独特的功能。我们有许多不同的信号,我们想要绘制,这可以产生更多关于细胞如何移动的见解。“

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章