冒险岛2梦幻乐园探索任务攻略(冒险岛2梦幻乐园探索任务攻略视频) 银行账户年检时间在每年( )月( )日前(银行账户年检) 无道具晨会互动小游戏(无道具晨会互动小游戏室内) 黄昏英雄传攻略(黄昏英雄传2.5攻略) 双面胶怎么快速去除胶水(双面胶怎么快速去除) 苹果醋解酒么(苹果醋为什么可以解酒) 怎样关闭电脑杀毒软件和防火墙(怎样关闭电脑杀毒软件和防火墙联想) 莫斯科气温和我国哪里差不多(莫斯科气温) 魔兽世界:探索艾萨拉(魔兽世界 艾萨拉) hopes是什么意思(hope是什么意思) 孕妇可以吃杏仁吗?(孕妇可以吃杏仁吗?孕中期) 8k纸有多大比A3大多少(8k纸有多大) 武汉艺术生文化课到底该如何学习?(武汉艺术生文化课培优) 节奏大师攻略四个技巧刷高分(节奏大师怎样玩才高分) 受凉感冒是风热还是风寒(受凉) 地球的南极北极都是冰天雪地那月球的两极呢(北极和南极都是冰天雪地) 蛇蛇大作战电脑版攻略(蛇蛇大作战游戏下载) 什么是哑口套和窗套(什么是哑口) WIN10电流麦解决方法(win10电脑电流麦怎么解决方法) 平时多吃什么食物补肾效果最好(平时多吃什么食物补肾效果最好女性) 哈伦裤适合什么年龄穿(哈伦裤适合什么人穿) 魔兽世界前夕稀有精英位置一览 看完就知道了(魔兽世界9.0前夕稀有精英位置与掉落) 如何实现创业成功(如何实现创业成功发展) QQ空间如何添加大图模块(qq空间怎么添加图片模块) 梦幻西游挖矿赚钱(挖矿赚钱) 剖腹产的好处(剖腹产的好处有哪些) 如图已知ab为圆o的直径弦cd⊥ab垂足为h(如图 已知AB是圆O的直径 弦CD垂直AB 垂足为H) 深圳上下沙租房攻略(深圳下沙哪里租房便宜) 被2345和hao123主页篡改修复方法 2015(2345是怎样篡改主页的以及如何彻底删除) nba历史得分榜百度一下(nba历史得分榜百度百科) 如何防雾霾 什么口罩防雾霾效果好(什么口罩可以防霾) 制作手工的材料有哪些(制作手工的材料有哪些简单) 天使等级 北京商标注册流程图(北京商标注册流程图解析) Galaxy S4 发布 全面解析新旗舰 图(galaxy s4 上市时间) 土大黄根主要治什么病(土大黄与大黄的区别) vivo手机怎么定位(vivo手机怎么定位查找) dnf更新失败怎么办 安装文件写入失败怎么办(为什么dnf更新写入失败) 隔玻璃晒太阳能起作用(隔着玻璃晒太阳能补钙) steam国服怎么玩apex(steam国服怎么玩最终幻想14) 纳雍县是哪个市 蜂蜜可以放冰箱吗(蜂蜜可以放冰箱吗可以放多久) 电脑怎么连热点(联想电脑怎么连热点) 石器时代宠物攻略(石器时代宠物大全) 经济管理出版社地址(经济管理出版社) 芒果tv怎么看湖南卫视(芒果tv怎么看湖南卫视回放) iPhone13如何在微店购物?(iphone13直营店可以直接买到吗) 淘宝海外版叫什么(淘宝海外版) 幽门螺杆菌抗体(幽门螺杆菌抗体偏高是怎么回事) iOS7.1.1固件下载(ios7.0.4固件下载)
您的位置:首页 >Nature杂志 > 免疫学 >

使用人工智能跟踪鸟类的夜间迁徙

导读 在春季和秋季迁徙的许多夜晚,数以千万计的鸟类在日落时飞行并经过我们的头顶,在夜空中看不见。尽管这些飞行已被国家气象局不断扫描天气雷

在春季和秋季迁徙的许多夜晚,数以千万计的鸟类在日落时飞行并经过我们的头顶,在夜空中看不见。尽管这些飞行已被国家气象局不断扫描天气雷达的网络记录了数十年,但直到最近这些数据对于鸟类研究人员来说几乎是遥不可及的。

马萨诸塞州阿默斯特大学的人工智能(AI)研究员Dan Sheldon表示,这是因为信息的巨大程度和缺乏分析工具的工具只能进行有限的研究。

他补充说,具有分析个别雷达图像的时间和专业知识的鸟类学家和生态学家可以清楚地看到能够区分降水与鸟类和研究迁移的模式。但是大量的信息 - 超过2亿张图像和数百TB的数据 - 显着限制了他们足够的夜晚,足够多的时间以及在足够的位置上有用的特征,更不用说追踪季节性,范围内的迁移的能力。他解释道。

显然,需要一个机器学习系统,Sheldon指出,“要除去雨水并保留鸟类。”

现在,来自康奈尔鸟类学实验室和其他人的同事,资深作者Sheldon和Subhransu Maji以及麻省大学信息与计算机科学学院的主要作者Tsung-Yu Lin公布了他们的新工具“MistNet”。用谢尔顿的话来说,它是“最新和最好的机器学习”,从雷达记录中提取鸟类数据,并在数十年的雷达数据档案中利用鸟类迁徙信息的宝库。该工具的名称是指鸟类学家用来捕捉迁徙鸣禽的精细,几乎看不见的“雾网”。

Sheldon说,MistNet可以“自动处理大规模数据集,该数据集已经测量了美国的鸟类迁徙超过20年。”“这是一个非常重要的进步。与手工工作的人相比,我们的成绩非常出色。它使我们能够从有限的20世纪见解转向21世纪的知识和保护行动。”他和合着者指出,“深度学习已经彻底改变了计算机模仿人类解决图像,视频和音频类似识别任务的能力。”

对于这项工作,部分由美国国家科学基金会资助Sheldon设计和测试此类应用的新数学方法和算法,该团队使用两个评估数据集对MistNet和竞争方法进行了大规模验证。他们的新论文还介绍了几个案例研究,以说明MistNet的优势和灵活性。细节出现在最新一期的“生态学与进化方法”中。

作者指出,MistNet基于图像的神经网络,包括为雷达数据的独特特征量身定制的几种架构组件。他们补充说,雷达鸟类学正在迅速发展,并导致有关尺度鸟类运动模式的重大发现。

该小组制作了过去24年移民发生地点和时间的地图,并对这些地图进行了动画制作,例如,“美国最密集的移民区”,Sheldon解释说 - 大致沿着密西西比河以西的走廊河。MistNet还允许研究人员估计迁徙鸟类的飞行速度和流量。

作者指出,MistNet旨在解决“雷达航空生态学中长期存在的挑战”之一,及时帮助科学家更好地利用现有的气象雷达数据,以及大型新数据集的“爆炸性” Sheldon及其同事说,这些项目由eBird,动物追踪设备和地球观测仪器等公民科学项目产生。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!

最新文章