霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 免疫学 >

蛋白质或细胞器的在控制各种细胞过程中起着至关重要的作用

蛋白质或细胞器的时空动态在控制各种细胞过程和疾病发展中起着至关重要的作用。然而,不能实现对细胞内不同位置的活性的急性控制。在《 Angewandte Chemie》杂志上,来自于默奥大学(瑞典)和马克斯·普朗克分子生理研究所(德国)的科学家提出了一种新的化学光遗传学方法,该方法能够对活细胞内多个亚细胞区室的活动进行可调,可逆和快速控制。 。

细胞需要对环境变化做出反应,并且需要平衡的信号传导系统在细胞内级联。细胞外,细胞表面上,细胞膜内以及细胞内的蛋白质编排了许多微调的信号通路,从而导致对环境条件的充分反应或生物本身的变化。细胞过程的时空组织,例如细胞信号传导,细胞极化和神经突生长,通常由分子或细胞器的亚细胞分布来调节。

单个蛋白质位于不同的亚细胞位置时可以执行不同的功能。一个例子是Rac1蛋白,它控制细胞内质膜上细胞骨架的形状,但是当它位于细胞核中时,它调节着核的形态。Rac1的核质穿梭在肿瘤侵袭中起重要作用。在神经元中,沿着轴突微管的双向运输在细胞器适当的亚细胞分布中起关键作用。其失调与神经退行性疾病有关。然而,对涉及不同细胞区室之间信号分子/细胞器的循环,运输或穿梭的复杂过程的分析仍然是一个重大挑战。

吴耀文小组最近成为了于默奥大学化学系的教授,该小组现在已经开发出一种称为“多向活性控制(MAC)”的新技术,该技术使得对细胞信号转导过程的实时研究成为可能。研究人员是开发在受控条件下实时观察细胞机制的方法的先驱。他们使用了可光活化的双化学诱导二聚化(pdCID)系统来控制细胞器和蛋白质在单个细胞中多个位置的定位。

该系统结合了两个化学反应,在单个细胞中形成蛋白质二聚体。其中之一可以由光控制。

“我们证明了我们的可光活化和化学诱导的二聚化系统可用于在单个细胞中以微调和多层的方式控制细胞器的功能和细胞信号传导途径,这是以前的现有方法无法实现的。我们将两种方法结合在一起以并行或竞争的方式构建模块化系统,以实现小分子和光对蛋白质或细胞器活动的多方向控制。”刚刚在北瑞典建立新实验室的吴耀文说。

该研究小组还可以表明,他们的新技术可以非常快速地诱导和观察不同的细胞反应,并且现在可以进行微扰研究,而这是使用传统遗传方法不可能实现的。

使用这种方法,科学家在单个细胞的细胞质,质膜和细胞核之间进行了多个Rac1穿梭循环。他们可以控制过氧化物酶体(参与分子氧化的细胞器)在两个方向上的运输,即到细胞外围,然后到细胞体,反之亦然。这就像在单元格中打台球一样,只是在微米级。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!