霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 免疫学 >

研究人员利用再生生物学恢复黏液产生

粘液是杯状细胞产生的一种保护性粘液分泌物,覆盖呼吸系统,消化系统和生殖系统的各个器官。粘液的产生对健康至关重要,不平衡可能危及生命。患有哮喘,慢性阻塞性肺疾病(COPD)和溃疡性结肠炎等疾病的患者通常会在杯状细胞过多的情况下产生过多的粘液。杯状细胞的损失可能同样具有破坏性,例如在癌症期间,感染后或受伤期间。粘液的产生,数量和运输之间的平衡至关重要,因此医生和医学研究人员长期以来一直在寻找杯状细胞的起源,并渴望控制其再生过程并保持种群平衡。

最近,匹兹堡大学的一群生物工程师发现了一个杯状细胞再生的案例,该案例不仅容易获得,而且在从早期发育的青蛙胚胎中分离的细胞上发生的异常快。他们的发现发表在本周的《自然通讯》杂志上(DOI:10.1038 / s41467-020-14385-y)。

皮特(Pitt)生物工程教授威廉·开普勒·怀特福德(William Kepler Whiteford)教授兰斯·戴维森(Lance Davidson)领导斯旺森工程学院的机电工程实验室,他的研究人员研究了力学在人类细胞以及非洲原住民蛙中的非洲蟾蜍胚胎中的作用。

戴维森解释说:“非洲爪蟾t像许多青蛙一样,具有呼吸皮肤,可以交换氧气并执行类似于人肺的任务。”“就像人的肺一样,非洲爪蟾呼吸道皮肤的表面是黏液纤毛的上皮,它是由杯状细胞和纤毛细胞形成的组织,还可以保护幼虫免受病原体的侵害。由于这些进化相似性,我们小组使用青蛙胚胎类器官来研究组织力学如何影响细胞生长和组织形成。”

研究这种物种是探索生物力学遗传起源以及如何感测机械线索的一种快速且经济高效的方式,不仅在青蛙胚胎中,而且在全世界都是如此。当临床医生研究患者的癌症时,这种变化可能需要数周,数月甚至数年,但在青蛙胚胎中,变化会在数小时内发生。

戴维森说:“在这个项目中,我们从早期胚胎中取出了一组间充质细胞,使其形成球形聚集体,并在五个小时内开始发生变化。”“已知这些细胞可以分化为多种类型,但是在这种情况下,我们发现它们非常显着地转变为一种细胞,如果它们在胚胎中就不会改变。”

实验室出人意料地发现了一个再生案例,该案例从间充质细胞中恢复了黏液纤毛上皮。他们多次进行了实验,以证实意外的发现,并开始仔细研究哪些微环境提示可以将细胞驱动为全新的类型。

戴维森解释说:“我们拥有调节容纳细胞的机械微环境的工具,令我们惊讶的是,我们发现,如果使环境变得更硬,聚集体就会变成这些上皮细胞。”“如果我们使它变软,我们就可以阻止它们改变。这一发现表明,仅靠机械原理就可以引起细胞的重要变化,这是一件了不起的事情。”

戴维森(Davidson)的小组对受力学影响的细胞如何影响疾病状态感兴趣。本文详述的结果可能会引发癌症生物学的新问题,促使研究人员根据周围环境的刚度或柔软度来考虑某些类型的浸润性癌细胞是否会恢复为静息细胞类型。

“将这些结果应用于癌症生物学时,人们可能会问,'如果肿瘤被软组织包围,它们是否会休眠并基本上是非侵入性的?'或者,“如果您将它们包裹在硬组织中,它们会入侵并变得致命吗?””戴维森说。“这是生物力学可以帮助回答该领域的主要问题。许多研究人员仅专注于化学途径,但我们也正在发现疾病的机械影响因素。”

韩国高级科学技术研究院(KAIST)研究员,MechMorpho实验室前成员Hye Young Kim将在KAIST基础科学研究所的血管研究中心继续这项工作。她将研究细胞活力在再生过程中如何变化以及上皮细胞如何组装新的上皮。Davidson和他的实验室将探索间充质细胞如何感测这种新颖的机械提示,以及如何将这些机械诱导途径与控制细胞命运选择的已知途径整合在一起。

他说:“青蛙胚胎和类器官使我们有无与伦比的途径来研究这些过程,而远远超过了人体器官。”“仅通过扩散生长因子和荷尔蒙来控制再生的古老观念正在被人们认识到,环境的物理机制(例如环境的橡胶性或流动性)起着同等重要的作用。”

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!