霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 免疫学 >

在电路级探索视网膜计算

我们的眼睛拥有一个强大的生物计算机,即视网膜。理解视网膜如何将外界的图像转换成大脑可以解释的信号,不仅可以洞悉大脑的计算,而且对医学也很有用。

随着机器学习和人工智能的发展,眼部疾病很快将根据视网膜进行的计算扰动来描述。我们是否对视网膜回路有足够的了解,以了解扰动将如何影响视网膜执行的计算?一个国际科学家团队在一组结合遗传学,病毒和分子工具,高密度微电极阵列和计算机模型的实验中解决了这个问题。这项工作表明,他们最新开发的视网膜模型可以高精度地预测确定的摄动的结果。这项工作是朝着可以预测视网膜疾病结果的视网膜计算机模型迈出的重要一步。

视觉始于视网膜,在该处感光细胞捕获落在眼睛上的光并将其转换为神经元活动。神经节细胞是视网膜的输出神经元,然后将视觉信号发送到大脑。但是,视网膜不仅仅是照相机和电缆:在感光器和神经节细胞之间,视网膜包含复杂的神经元回路,这些回路由许多不同的神经元细胞类型组成。这些电路以复杂的方式处理输入信号,并提取视觉场景的重要特征。在视网膜的输出层,视网膜回路的计算导致视觉场景的约30种不同的神经元表示:然后将它们并行传输到大脑。因此,视网膜就像一个强大的计算设备,

要了解视觉机制并预测视觉疾病的结果,必须了解〜30个视网膜输出通道如何代表视觉世界,以及它们不同的功能特性是如何从视网膜回路的结构中产生的。为了解决这个问题,来自弗里德里希·米歇尔研究所(FMI),巴塞尔分子与临床眼科研究所(IOB),苏黎世联邦理工学院和巴黎高等师范学院的科学家团队在研究这种视网膜病变如何改变时扰动了特定的视网膜回路元件。不同视网膜输出通道的功能特性。

Botond Roska研究小组的前研究生,论文的主要作者Antonia Drinnenberg开发了一种控制水平细胞活性的方法。水平细胞是视网膜回路元件,在感光细胞和双极细胞之间的第一个视觉突触处提供反馈抑制。该方法涉及一组特定的病毒,转基因小鼠和经工程设计的配体门控离子通道,使她可以打开和关闭第一次视觉突触时的反馈。为了测量这种摄动对视网膜输出的影响,她使用了由Andreas Hierlemann小组开发的高密度微电极阵列,并同时记录了数百个神经节细胞的电信号。令人惊讶的是,摄动引起了视网膜输出的大量不同变化。Drinnenberg说:“由于单个定义明确的电路元件的扰动,我们所观察到的各种效果使我们感到惊讶,”“起初,我们怀疑技术问题可能是这种多样性的根源。”但是,在测量了数千个神经节细胞和确定的视网膜输出通道中的信号后,很明显,所测量的水平细胞贡献的多样性必须来自视网膜电路的特定架构。

视网膜电路的单个元素如何导致如此多种作用?论文的第一作者Felix Franke和资深作者Rava A. da Silveira建立了视网膜的计算机模型。该模型模拟了信号可以通过视网膜的不同路径,并使团队能够研究我们目前对视网膜电路的了解是否可以解释他们在实验中观察到的影响。在研究模型的行为时,研究人员发现模型可以重现他们通过实验测得的整套变化。此外,研究小组发现,该模型对水平单元的作用做出了五项进一步的预测,这是他们以前在数据中看不到的。弗兰克说:“我们惊讶地看到该模型比我们建立模型时所想的要进一步发展。”“当我们进行其他实验来测试它们时,所有其他预测都证明是正确的。”

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!