霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Nature杂志 > 免疫学 >

神经计算机像人类一样聆听

麻省理工学院的研究人员使用称为深度神经网络的机器学习系统,创建了第一个模型,该模型可以复制人类在听觉任务(例如识别音乐流派)上的表现。

该模型由多层信息处理单元组成,可以对大量数据进行训练以执行特定任务,研究人员使用该模型来阐明人脑如何执行相同任务。

“这些模型首次为我们提供了可以执行对人类重要的感官任务并且在人类层面上可以完成的感官任务的机器系统,” Frederick A.和Carole J. Middleton神经科学助理教授Josh McDermott说。在麻省理工学院的脑与认知科学系任研究的高级作者。“从历史上看,这种感觉处理一直很难理解,部分原因是我们还没有真正清楚的理论基础和开发可能发生的情况的模型的好方法。”

这项研究发表在4月19日的《神经元》上,也提供了证据,证明人类听觉皮层像视觉皮层一样是按等级组织排列的。在这种类型的布置中,感官信息经过连续的处理阶段,其中较早地处理了基本信息,而在较后的阶段中提取了更高级的功能,例如单词含义。

麻省理工学院研究生Alexander Kell和斯坦福大学助理教授Daniel Yamins是该论文的主要作者。其他作者是前麻省理工学院访问学生埃里卡·舒克(Erica Shook)和前麻省理工学院博士后山姆·诺曼·海涅格(Sam Norman-Haignere)。

当深度神经网络在1980年代首次开发时,神经科学家希望这种系统可以用于对人脑建模。但是,那个时代的计算机功能不足,无法构建足以执行诸如对象识别或语音识别之类的实际任务的模型。

在过去的五年中,计算能力和神经网络技术的进步使得使用神经网络执行困难的现实任务成为可能,并且它们已成为许多工程应用中的标准方法。同时,一些神经科学家重新考虑了将这些系统用于人脑建模的可能性。

“这对于神经科学来说是一个令人兴奋的机会,因为我们实际上可以创建一个可以完成人们可以做的事情的系统,然后我们可以查询这些模型并将它们与大脑进行比较,” Kell说。

麻省理工学院的研究人员训练了他们的神经网络来执行两项听觉任务,一项涉及语音,另一项涉及音乐。对于语音任务,研究人员为该模型提供了成千上万个两秒钟的谈话记录。任务是识别剪辑中间的单词。对于音乐任务,要求模型识别两秒钟的音乐片段的类型。每个剪辑还包含背景噪声,以使任务更加逼真(也更加困难)。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!